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Quantum Deformation of the Two-Dimensional
Hydrogen Atom in a Magnetic Field

Anjana Sinha1

Received December 23, 1997

The deformed SchroÈ dinger equation for the two-dimensional hydrogen atom in
a homogeneous magnetic field is obtained. It is found that the deformed potential
belongs to a new set of quasi-exactly solvable potentials.

The quantum deformation of Lie algebras, also called Lie groups (Fad-

deev, 1984; Drinfeld, 1986; Lukiersky et al., 1991, 1993; Bacry, 1993; Chai-

chian and Kulish, 1990), has attracted much recent attention. Quantum groups

play an important role in conformal field theory (Alvarez Goume et al.,
1990), statistical mechanics, inverse scattering theory (Kulish and Sklyanin,

1982), the Yang±Baxter equation (Degasperis and Shabat, 1994) geometrical
quantization, etc. In this approach, some authors have realized the SUq(2)

algebra using deformed harmonic oscillator creation and annihilation opera-

tors (Arik and Coon, 1976; Biedenharn, 1989; Mcfarlane, 1989). Others have

used the SUq(2) as well as the deformed oscillator structure to determine

the effect of deformation on physical observables (Dayi and Duru, 1995;
Daskaloyannis and Ypsilartis, 1992; Biedenharn et al., 1993; Ting and Li,

1992; Roy and Roychoudhury, 1995a; Day et al., 1994).

In this paper we show how the exact solution of the deformed wave

equation can be obtained for the potential

V(r) 5 2
Z

r
1 l r2 1

m2 2 1/4

2r2

using the technique of partial algebraization. The potential given above repre-

sents a model of the two-dimensional hydrogen atom in a magnetic field,
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and belongs to the class of the so-called quasi-exactly solvable potentials

(Roy and Roychoudhury, 1994, 1995b; Turbiner and Ushveridze, 1987; Shif-

man, 1989). Exact solutions for the more general case, viz., V(r) 5 2 Z/r 1
2gr 1 l r2 1 l(l 1 1)/2r2, were given by Roychoudhury and Varshni (1988).

More recently, Taut (1995) gave analytical solutions for the above potential

for the case g 5 0.

We shall use the finite-dimensional representation of SU(2) and discuss

the formalism of SUq(2) up to j 5 3/2. Since calculations lose their simplicity

and straightforwardness with increasing values of j, and j 5 1 is the simplest
and most elegant example of an exactly deformed SchroÈ dinger equation, we

shall discuss in detail the above formalism for j 5 1. The deformed potential

looks completely different from the original one, and has shifted Coulomb

potential-like terms, e.g., 1/[1 1 ( b / a ) r ] and 1/[1 1 ( b / a ) r ]2. We obtain the

eigenvalues and eigenfunctions to O( t 2) (where t 5 ln q, q being the deforma-

tion parameter) and see that when q ® 1, our results agree with the undeformed
results of Taut (1995).

Now we study the deformation of the SchroÈ dinger problem with potential

V(r) 5 2
Z

r
1 l r2 1

m2 2 1/4

2r2 (1)

The radial wave function u(r) satisfies the two-dimensional radial SchroÈ d-

inger equation

F 2
1

2

d 2

dr 2 1
m2 2 1/4

2r 2 1
1

2
w2r 2 2

Z

r G u(r) 5 (E 2 mw)u(r) (2)

where m is the angular momentum, w is the Larmor frequency, and

c (r) 5
u(r)

! r
(3)

For more details see Taut (1995).

In terms of the rescaled variable

r 5 ! wr (4)

equation (2) reduces to

F 2
1

2

d 2

d r 2 1 V( r ) G u( r ) 5 eu( r ) (5)
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where

V( r ) 5
m2 2 1/4

2 r 2 1
r 2

2
2

Z/ ! w

r
(6)

e 5
E

w
2 m

We now follow the standard method of partial algebraization based on SU(2)

algebra. We follow the notations of Taut (1995).

We take the gauge function to be

W( r ) 5 r 2
| m | 1 1/2

r
(7)

so that

u( r ) 5 exp( 2 * w( r ) d r ] (8)

5 e 2 r 2/2 r | m | 1 1/2 f ( r )

and the gauge-transformed Hamiltonian reads

HG 5 2
1

2

d 2

d r 2 1 H r 2
| m | 1 1/2

r J d

d r
1 | m | 1 1 2

Z/ ! w

r
(9)

Defining

V G f [ r (HG 2 e) f (10)

we get

V G f 5 H 2
1

2
r

d 2

d r 2 1 [ r 2 2 ( | m | 1 1/2)]
d

d r
2

Z

! w
1 r ( | m | 1 1 2 e) J f (11)

In terms of the finite-dimensional representation of the SU(2) group genera-

tors, V G can be written as

V G 5 AT 02
1 DT 2 T 0 1 FT 2 T + 1 GT + 1 HeT

2 1 IT 0 (12)

where T 0, T 6 are the generators of SU(2) algebra which satisfy the following

commutation rules:

[T +, T 2 ] 5 2T 0

(13)
[T 6 , T 0] 5 T 6
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In terms of differential operators, T 6 , T 0 may be given by

T + 5 2j j 2 j 2 d

d j

T 0 5 2 j 1 j
d

d j
(14)

T 2 5
d

d j

With the help of (14), V G then takes the form

V G 5 {(A 2 F) r 2 1 D r }
d 2

d r 2

1 {[(1 2 2j)A 1 2( j 2 1)F 1 I] r 2 G r 2 1 He 1 D(1 2 j)}
d

d r

1 {2jG r 1 Aj2 1 2jF 2 jI} (15)

Comparing (11) and (15), we obtain

A 5 2
Z

! w

1

j( j 1 1)
5 F 5 I

D 5 2 1/2

G 5 2 1 (16)

He 5 2 | m | 2 j/2

E 5 w{1 1 2j 1 m 1 | m | }

e 5 1 1 2j 1 | m |

To obtain the deformed SchroÈ dinger equation, we keep the coefficients

A, D, G, He , F, and I unchanged, but replace T 6 , T 0 by T 6
q , T 0

q in (12),
where T 6

q , T 0
q satisfy the commutation relations

[T 1
q , T 2

q ] 5 [2T 0
q] (17)

[T 6
q , T 0

q] 5 T 6
q

where

[n] 5
qn 2 q 2 n

q 2 q 2 1 5
sinh t n

sin t
, (18)

t 5 ln q

q is the deformation parameter; it is a real number.
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Case 1. First we consider the case j 5 1/2. Then T 6 , T 0 are given by

T + 5 1 0 1

0 0 2
T 2 5 1 0 0

1 0 2 (19)

T 0 5 1 1/2 0

0 2 1/2 2
It is found that in this case

sinh 2 t T 0

sinh t
5 2T 0

Hence, no deformation occurs.

So

T 6
q 5 T 6 , T 0

q 5 T 0 (20)

and V q
G ( 5 V G) reduces to

V q
G 5 V G 5 1 2 Z/ ! w 2 1

2 | m | 2 1±2 2 Z/ ! w 2 (21)

The eigenvalue equation

(H
q
G 2 eq) f 5 0

implies

det V q
G 5 0

which leads to

w 5
Z 2

| m | 1 1/2
(22)

E 5 w(m 1 | m | 1 2)

This result agrees with that of the analytical approach to the undeformed

problem in Taut (1995).
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Case 2. j 5 1. The SU(2) generators in this case are given by

T + 5 ! 2 1 0 1 0

0 0 1

0 0 0 2
T 2 5 ! 2 1 0 0 0

1 0 0

0 1 0 2 (23)

T 0 5 1 1 0 0

1 0 0

0 0 2 1 2
It is seen that

sinh 2 t T 0

sinh t
5 [2]T 0

so that we may take the following realization of T 6
q , T 0

q:

T 6
q 5 a T 6 , T 0

q 5 T 0 (24)

where

a 5 ([2]/2)1/2 (25)

Thus the deformed equation for V G takes the form

V q
G 5 AT 02

1 a DT 2 T 0 1 a 2FT 2 T + 1 a GT + 1 a HeT
2 (26)

1 IT 0

Eigenvalues are determined by the condition

det V q
G 5 0

which gives

w 5
a 2Z 2

(2 | m | 1 1) 1 2 a 2( | m | 1 1)
(27)

E 5 w{ | m | 1 m 1 3}

Thus w and E now depend on the deformation parameter a .
For small deformation,

a 5 1 [2]

2 2
1/2

. 1 1
t 2

4
(28)
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so that, up to O( t 2),

w 5
Z 2

4 | m | 1 3 H 1 1 1 t
2

2 2 2 | m | 1 1

4 | m | 1 3 J (29)

Thus our result agrees with that of Taut (1995) in the absence of any

deformation.

In terms of the differential operator, V q
G can be written as

V q
G 5 H 2

Z

2 ! w(1 2 a 2)
r 2 2

a
2

r J d 2

d r 2

1 H (1 2 a 2)( j 2 1)
Z

! w
r 1 a r 2 2 a 1 | m | 1

1

2 2 J d

d r

2 {( j 2 1) 1 2 a 2}
Z

2 ! w
2 a r (e 2 | m | 2 1) (30)

To get back the SchroÈ dinger equation, we use the reverse transformation in
the equation

V q
G f q( r ) 5 0 (31)

with

f q( r ) 5 r 2 ( | m | 1 1/2) 1 1 1
b
a

r 2
l

e( a / b ) r uq( r ) (32)

where

b 5
Z

! w
(1 2 a 2)

(33)

l 5 | m | 1
1

2
2

a 2

b 2

It can be shown that

f q( r ) 5 1 1 a1 r 1 a2 r 2 (34)

is a solution of equation (31) provided

a1 5 2
a Z

! w

1

| m | 1 1/2
(35)

a2 5
a 2

| m | 1 1/2
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Thus uq( r ) satisfies the deformed SchroÈ dinger equation

H 2
1

2

d 2

d r 2 1 (Vq( r ) 2 eq) J uq( r ) 5 0 (36)

where the deformed potential Vq( r ) and the deformed energy eq are given by

Vq( r ) 2 eq 5
m2 2 1/4

2 r 2 2
1

r H a Z

! w
1

b
a 1 | m | 1

1

2 2
2

J
1

1

1 1 ( b / a ) r H b Z

! w
2 (e 2 | m | 2 1) 2

a 2

b 2 1
b 2

a 2 1 | m | 1
1

2 2
2

J
1

1

[1 1 ( b / a ) r ]2 H a 2

b 2 1 1 | m | 1
1

2 2 1 | m | 1
3

2 2 b 2

a 2 2 2( | m | 1 1) J (37)

For small values of the deformation parameter, up to O( t 2), (37) reduces to

Vq( r ) 2 eq 5
m2 2 1/4

2 r 2 1
r 2

2
2

Z/ ! w

r
2 e

1 1 t
2

2 2 Z

! w H r 2 2 (e 1 | m | 1 1) r

1
( | m | 1 1/2)2 2 1/2

r
2

Z

! w J (38)

and the wave function assumes the form

Uq( r ) 5 e 2 r 2/2 exp H 2
t 2

2

Z

! w 1 r
3

3
2 1 | m | 1

1

2 2 r 2 J
3 r | m | 1 1/2 H 1 2

Z

| m | 1 1/2

r

! w
1

1

| m | 1 1/2
r 2

1
t 2

| m | 1 1/2 1 r
2

2
2

Z

4

r

! w 2 r

! w J (39)

It can be shown that in the limit t ® 0, our results agree completely

with the undeformed result of Taut (1995).

Case 3. j 5 3/2. Eigenvalues for higher values of j are less straightforward

to calculate. The reason for this is that there is no simple relationship between

the deformed and underformed generators of SU(2), unlike the case j 5 1
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[see equation (24)]. Hence T 6
q , T 0

q cannot be given a simple form in terms

of the differential operators, which, in turn, prevents one from obtaining the

deformed potential in such cases. However, one can always obtain the
deformed energy and the deformed wave function by writing explicitly the

matrices for T 6
q , T 0

q. For example, for j 5 3/2

T 1
q 5 1

0 ! [3] 0 0

0 0 [2] 0

0 0 0 ! [3]

0 0 0 0 2
T 2

q 5 (T 1
q )+ (40)

T 0
q 5 1

3/2 0 0 0

0 1/2 0 0

0 0 2 1/2 0

0 0 0 2 3/2 2
In terms of these deformed generators, the gauge-transformed equation reads

V q
G 5 AT 02

q 1 DT 2
q T 0

q 1 FT 2
q T 1

q 1 GT 1
q 1 HeT

2
q 1 IT 0

q (41)

where A, D, F, G, He, and I are given by (16).

Hence the deformed energy eigenvalue is obtained from

Eq 5 v q( | m | 1 m 1 4) (42)

where v q is determined from the condition

det V q
G 5 0 (43)

From (40), (41), and (43) we get, after some algebra,

v q 5 1 4Z

15 2
2

H 2 a2 6 ! a2
2 2 4a1a3

2a1 J (44)

where

a1 5 1 | m | 1
1

2 2 1 | m | 1
3

2 2 [3]2

a2 5 2 1 34 1 [3] 2 H 15

4
[2]2( | m | 1 1) 2

15

4
[3] 1 | m | 1

1

2 2
1 1 [2]2 2

1

4 2 [3] 1 | m | 1
3

2 2 J (45)
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a3 5 2
15

4 1 [2]2 2
1

4 2 1 34 1 [3] 2
2

Thus, analogous to the undeformed case, there are two solutions for

j 5 3/2, even in the deformed version. For small deformation [using (18)]

a1 5 a10 1 1 2
24

9
t 2 2

a2 5 a20 1
15

4
t 2(43 | m | 1 76) (46)

a3 5 a30 1 1 2
48

15
t 2 2

where a10, a20 and a30 stand for a1, a2, and a3, respectively, in the absence
of deformation, given by

a10 5 9 1 | m | 1
1

2 2 1 | m 1
3

2 2
a20 5 2 1 15

4 2
2

(4 | m | 1 7) (47)

a30 5 2 1 15

4 2
4

so that

v 0 5 1 4Z

15 2
2

H 2 a20 6 ! a2
20 2 4a10a30

2a10 J
5 Z 2 H (4 | m | 1 7) 6 2 ! 13 | m | 2 1 32 | m | 1 19

18( | m | 1 1/2)( | m | 1 3/2) J (48)

To the best of our knowledge even this undeformed result has not been

given in the literature.

To conclude, we have shown that there is no deformation of the 2D

hydrogen atom in a magnetic field in the case j 5 1/2, and we get back the
results of Taut (1995). For j 5 1, the deformation gives a new set of quasi-

exactly solvable potentials. To the lowest order, i.e., O( t 2), this potential

gives linear and cubic terms in r (which is directly related to t ), apart from

the 2D hydrogen atom potential. Also the results of Taut (1995) are reproduced

in the limit t ® 0, i.e., when the deformation parameter vanishes.
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For higher j values, calculations are less straightforward due to the

absence of a simple relationship between T 6
q , T 0

q and T 6 , T 0 and it is not

easy to see the nature of the deformed potential. However, the deformed
energy can be always obtained by writing explicitly the matrices for T 6

q ,

T 0
q as we have shown for the case j 5 3/2.
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